|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D. |
Задача 30809
УсловиеДокажите, что связный граф с 2n нечётными вершинами можно нарисовать, оторвав карандаш от бумаги ровно n –1 раз и не проводя никакое ребро дважды. РешениеРазобьём нечётные вершины на пары и каждую пару соединим новым ребром. Согласно задаче 30806 полученный граф можно обойти по циклу. Удалив новые рёбра, мы разобьём цикл на n частей. Источники и прецеденты использования
|
||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|