ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Один из простейших многоклеточных Башенные часы отбивают три удара за 12 с. В течение какого времени они пробьют шесть ударов? Через точки R и E, принадлежащие сторонам AB и AD
параллелограмма ABCD и такие, что AR = ⅔ AB,
AE = ⅓ AD, проведена прямая. Делится ли число 102002 + 8 на 9? На одной стороне острого угла даны точки A и B. Постройте на
другой его стороне точку C, из которой отрезок AB виден под
наибольшим углом.
Дан куб с ребром 1. Докажите, что сумма расстояний от
произвольной точки до его вершин не меньше 4 Постройте треугольник ABC по ma, mb и mc.
Малыш подарил Карлсону 111 конфет. Сколько-то из них они тут же съели вместе, 45% оставшихся конфет пошли Карлсону на обед, а треть конфет, оставшихся после обеда, нашла во время уборки фрёкен Бок. Сколько конфет она нашла? Выпуклый многоугольник разрезан на выпуклые семиугольники (так, что каждая сторона многоугольника является стороной одного из семиугольников). Докажите, что найдутся четыре соседние вершины многоугольника, принадлежащие одному семиугольнику. Внутри квадрата отмечено 100 точек. Квадрат разбит на треугольники таким образом, что вершинами треугольников являются только отмеченные 100 точек и вершины квадрата, причём для каждого треугольника разбиения каждая отмеченная точка либо лежит вне этого треугольника, либо является его вершиной (разбиения такого типа называются триангуляциями). Найдите число треугольников разбиения. |
Задача 34992
УсловиеВнутри квадрата отмечено 100 точек. Квадрат разбит на треугольники таким образом, что вершинами треугольников являются только отмеченные 100 точек и вершины квадрата, причём для каждого треугольника разбиения каждая отмеченная точка либо лежит вне этого треугольника, либо является его вершиной (разбиения такого типа называются триангуляциями). Найдите число треугольников разбиения. ПодсказкаПодсчитайте сумму углов всех треугольников. РешениеСумма углов треугольников с вершиной в некоторой вершине квадрата равна 90°, каждая из отмеченных 100 точек даёт вклад, равный 360°. Поскольку других вершин треугольников нет, то сумма углов всех треугольников разбиения равна 100·360° + 4·90° = 202·180°. Поскольку сумма углов треугольника равна 180°, то количество треугольников равно 202. Ответ202 треугольника. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке