ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что в любом треугольнике сумма длин высот
меньше периметра.
На сторонах угла AOB от вершины O отложены отрезки OA и OB, причем OA > OB. На отрезке OA взята точка M, на продолжении отрезка OB — точка N так, что AM = BN = x. Найти значение x, при котором отрезок MN имеет наименьшую длину.
Пусть даны последовательности чисел {an} и {bn},
связанные
соотношением
Sn = a1 + a2 +...+ an
с последовательностью {bn}?
На какое максимальное число кусков можно разделить круглый блинчик при помощи трех прямолинейных разрезов? Можно ли поверхность единичного куба оклеить четырьмя треугольниками площади 1,5? |
Задача 35072
УсловиеМожно ли поверхность единичного куба оклеить четырьмя треугольниками площади 1,5? ПодсказкаПоверхность куба можно оклеить двумя равными прямоугольниками. РешениеВначале оклеим поверхность куба двумя равными прямоугольниками размером 1×3: каждый из этих прямоугольников покрывает три соседние грани куба. Каждый из них разрежем диагональю на два равных прямоугольных треугольника. Площадь каждого такого треугольника равна 1,5. ОтветМожно. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке