ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Обозначим корни уравнения x² + px + q = 0 через x1, x2. Нарисуйте на фазовой плоскости Opq множества точек M(, q),
которые задаются условиями:
В прямоугольном треугольнике ABC с прямым углом C, углом B, равным 30o, и катетом CA = 1, проведена медиана CD. Кроме того, из точки D под углом 15o к гипотенузе проведена прямая, пересекающая отрезок BC в точке F. Найдите площадь треугольника CDF. Укажите её приближённое значение в виде десятичной дроби с точностью до 0,01.
В треугольнике ABC проведена биссектриса CQ. Около треугольника BCQ описана окружность радиуса 1/3, центр которой лежит на отрезке AC.
С помощью циркуля и линейки постройте окружность данного радиуса, касающуюся двух данных окружностей.
Докажите, что для двух непересекающихся окружностей R1 и R2
цепочка из n касающихся окружностей (см. предыдущую задачу)
существует тогда и только тогда, когда угол между окружностями T1
и T2, касающимися R1 и R2 в точках их пересечения с прямой,
соединяющей центры, равен целому кратному угла
360o/n (рис.).
В классе учится меньше 50 школьников. За контрольную работу седьмая часть учеников получила пятёрки, третья – четвёрки, половина – тройки. Остальные работы были оценены как неудовлетворительные. Сколько было таких работ? Точки
A1,..., A6 лежат на одной окружности,
а точки K, L, M и N — на прямых
A1A2, A3A4, A1A6 и A4A5
соответственно, причем
KL| A2A3, LM| A3A6 и
MN| A6A5.
Докажите, что
NK| A5A2.
Имеется пирог некоторой формы. Докажите, что его можно разрезать на четыре равные по массе части двумя прямолинейными перпендикулярными разрезами. |
Задача 35236
УсловиеИмеется пирог некоторой формы. Докажите, что его можно
разрезать на четыре равные по массе части двумя прямолинейными
перпендикулярными разрезами.
ПодсказкаДля каждого направления найдите прямую, делящую пирог пополам,
а также перпендикулярную ей прямую, делящую пирог пополам.
Непрерывно изменяя эту пару перпендикулярных прямых, найдите
положение, в котором равновелики 4 части, на которые разделен
пирог.
РешениеМожно переформулировать задачу следующим образом: на плоскости дана некоторая фигура Ф площади S (для простоты можно предполагать, что Ф - многоугольник). Требуется найти две перпендикулярные прямые, делящие Ф на 4 равные по площади части. Вначале заметим, что для любого направления (или для любого вектора) найдется прямая этого направления, делящая площадь Ф пополам. В самом деле, рассмотрим, например, горизонтальное направление. Рассмотрим горизонтальную прямую, относительно которой Ф находится в нижней полуплоскости. Начинаем непрерывно сдвигать прямую вниз пока Ф не окажется целиком в верхней полуплоскости относительно прямой. Площадь той части Ф, которая находится выше прямой, изменяется при этом непрерывно от 0 до S, следовательно, в некоторый момент эта площадь будет равна S/2. Итак, каждому единичному вектору a сопоставляется прямая l(a), делящая площадь Ф пополам. Выберем некоторый вектор a и обозначим за b вектор, который получается из a поворотом на 900. Рассмотрим прямые l(a) и l(b), удобно принять эти прямые соответственно за оси Ox и Oy прямоугольной системы координат. Положительное направление на этих осях выберем вдоль векторов a и b. Обозначим через S1, S2, S3, S4 площади частей фигуры Ф, находящиеся соответственно в первом, втором, третьем и четвертом квадрантах. Имеем: S1+S2=S3+S4 и S1+S4=S2+S3. Складывая и вычитая уравнения, получаем, что S1=S3 и S2=S4, а поскольку S1+S2+S3+S4=S, найдется такое число d ("дефект"), что S1=S3=S/4-d и S2=S4=S/4+d. Теперь будем непрерывно вращать вектор a (и соответственно вектор b) и для каждого положения вычислять "дефект" d (который зависит от положения вектора a). При непрерывном вращении вектора a прямые l(a), l(b) меняются непрерывно, соответственно площади частей, на которые эти прямые делят Ф, меняются непрерывно. Отсюда следует и непрерывное изменение "дефекта" d. Для начального положения вектора a "дефект" равен d. Когда a повернулся на 900 и совпал с вектором b, "дефект" стал равен -d. Значит, для некоторого положения вектора a "дефект" равен 0. Соответствующие прямые l(a) и l(b) разделят Ф на равновеликие части. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке