ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть x = sin 18°. Докажите, что 4x² + 2x = 1. Докажите, что уравнение a1 sin x + b1 cos x + a2 sin 2x + b2 cos 2x + ... + an sin nx + bn cos nx = 0 имеет хотя бы один корень при любых значениях a1, b1, a2, b2, ..., an, bn. В треугольнике ABC известно, что AB = BC, AC = 10. Из середины D стороны AB проведён перпендикуляр DE к стороне AB до пересечения со стороной BC в точке E. Периметр треугольника ABC равен 40. Найдите периметр треугольника AEC.
В треугольнике боковая сторона равна 16 и образует с основанием угол в 60o; другая боковая сторона равна 14. Найдите основание.
В равнобедренную трапецию вписана окружность. Площадь равнобедренной трапеции, описанной около окружности, равна S, а высота трапеции в два раза меньше её боковой стороны. Дан прямоугольный треугольник. Впишите в него прямоугольник с общим прямым углом, у которого диагональ минимальна. |
Задача 35601
УсловиеДан прямоугольный треугольник.
Впишите в него прямоугольник с общим прямым углом, у которого
диагональ минимальна.
ПодсказкаДиагональ не меньше высоты, опущенной из вершины прямого угла на
гипотенузу.
РешениеДиагональ прямоугольника является наклонной, проведенной из вершины прямого угла к гипотенузе. Следовательно, диагональ не меньше высоты, опущенной из вершины прямого угла на гипотенузу, и наименьшее значение длины диагонали достигается тогда, когда одна из диагоналей совпадает с высотой треугольника. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке