ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольник вписан квадрат (две вершины на одной стороне и по одной на остальных). Докажите, что центр вписанной окружности треугольника лежит внутри квадрата. Пусть M — центр масс n-угольника
A1...An;
M1,..., Mn — центры масс (n - 1)-угольников,
полученных из этого n-угольника выбрасыванием вершин
A1,...,
An соответственно. Докажите, что многоугольники
A1...An
и
M1...Mn гомотетичны.
Клайв прокрутил минутную стрелку, так же как в задаче 32796.) Сумма n чисел равна нулю, а сумма их квадратов равна единице. Докажите, что среди этих чисел найдутся два, произведение которых не больше – 1/n. Два охотника отправились одновременно навстречу друг другу из двух деревень, расстояние между которыми 18 км. Первый шёл со скоростью 5 км/ч, а второй – 4 км/ч. Первый охотник взял с собой собаку, которая бежала со скоростью 8 км/ч. Собака сразу же побежала навстречу второму охотнику, встретила его, тявкнула, повернула и с той же скоростью побежала навстречу хозяину, и так далее. Так она бегала до тех пор, пока охотники не встретились. Сколько километров она пробежала? Мачеха, уезжая на бал, дала Золушке мешок, в котором были перемешаны мак и просо, и велела перебрать их. Когда Золушка уезжала на бал, она оставила три мешка: в одном было просо, в другом — мак, а в третьем — ещё не разобранная смесь. Чтобы не перепутать мешки, Золушка к каждому из них прикрепила по табличке: "Мак", "Просо" и "Смесь". Мачеха вернулась с бала первой и нарочно поменяла местами все таблички так, чтобы на каждом мешке оказалась неправильная надпись. Ученик Феи успел предупредить Золушку, что теперь ни одна надпись на мешках не соответствует действительности. Тогда Золушка достала только одно-единственное зёрнышко из одного мешка и, посмотрев на него, сразу догадалась, где что лежит. Как она это сделала? Три бегуна А, Б, В несколько раз совершили забег на 100 метров. При подведении результатов оказалось, что А обогнал Б больше, чем в половине забегов, Б обогнал В больше, чем в половине забегов, а В обогнал А больше, чем в половине забегов. Могло ли это случиться? |
Задача 35779
УсловиеТри бегуна А, Б, В несколько раз совершили забег на 100 метров. При подведении результатов оказалось, что А обогнал Б больше, чем в половине забегов, Б обогнал В больше, чем в половине забегов, а В обогнал А больше, чем в половине забегов. Могло ли это случиться? РешениеПусть в трёх забегах бегуны финишировали в таком порядке: АБВ, БВА, ВАБ. Тогда А был быстрее Б в двух случаях из трёх, Б был быстрее В в двух случаях из трёх, и В был быстрее А в двух случаях из трёх. ОтветМогло. ЗамечанияЗадача из книги Гуго Штейнгауза "Задачи и размышления". Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке