Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC проведена биссектриса прямого угла CL. Из вершины A ( $ \angle$A > 45o) на CL опущен перпендикуляр AD. Найдите площадь треугольника ABC, если AD = a, CL = b.

Вниз   Решение


A', B', C', D', E' — середины сторон выпуклого пятиугольника ABCDE. Доказать, что площади пятиугольников ABCDE и A'B'C'D'E' связаны соотношением:

SA'B'C'D'E'$\displaystyle \ge$$\displaystyle {\textstyle\frac{1}{2}}$SABCDE.

ВверхВниз   Решение


На сторонах остроугольного треугольника ABC взяты точки A1, B1, C1 так, что отрезки AA1, BB1, CC1 пересекаются в точке H.
Докажите, что  AH·A1H = BH·B1H = CH·C1H  тогда и только тогда, когда H – точка пересечения высот треугольника ABC.

ВверхВниз   Решение


Пусть O — центр правильного треугольника ABC, сторона которого равна 10. Точка K делит медиану BM треугольника BOC в отношении 3:1, считая от точки B. Что больше: BO или BK?

ВверхВниз   Решение


В стране Мара расположено несколько замков. Из каждого замка ведут три дороги. Из какого-то замка выехал рыцарь. Странствуя по дорогам, он из каждого замка, стоящего на его пути, поворачивает либо направо, либо налево по отношению к дороге, по которой приехал. Рыцарь никогда не сворачивает в ту сторону, в которую он свернул перед этим. Доказать, что когда-нибудь он вернётся в исходный замок.

ВверхВниз   Решение


С помощью одной линейки опустите перпендикуляр из данной точки на прямую, содержащую данный диаметр данной окружности, если точка не лежит ни на окружности, ни на данной прямой.

Вверх   Решение

Задача 52360
Темы:    [ Построения одной линейкой ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

С помощью одной линейки опустите перпендикуляр из данной точки на прямую, содержащую данный диаметр данной окружности, если точка не лежит ни на окружности, ни на данной прямой.


Подсказка

Соедините данную точку с концами данного диаметра и воспользуйтесь теоремой о высотах треугольника.


Решение

Соединим данную точку M с концами данного диаметра AB. Если прямая AM вторично пересекает окружность в точке C, а прямая BM — в точке D, то высоты треугольника AMB лежат на прямых AD и BC. Пусть эти прямые пересекаются в точке H. Тогда третья высота треугольника AMB также проходит через точку H, т.к. прямые, содержащие высоты треугольника, пересекаются в одной точке. Следовательно, прямая MH перпендикулярна прямой AB.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 22
web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .