ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
а) Используя геометрические соображения,
докажите, что основание и боковая сторона равнобедренного
треугольника с углом
36o при вершине несоизмеримы.
Найдите cos 36° и cos 72°. |
Задача 52779
Условие
Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.
Подсказка
Примените теорему о касательной и секущей.
Решение
Пусть A и B — точки пересечения двух окружностей, MN — общая касательная (M и N — точки касания), K — точка пересечения прямых AB и MN (A между K и B). Тогда
MK2 = KB . KA и NK2 = KB . KA.
Следовательно, MK = NK.
Пусть A и B — точки пересечения двух окружностей, MN — общая касательная (M и N — точки касания), K — точка пересечения прямых AB и MN (A между K и B). Тогда
MK2 = KB . KA и NK2 = KB . KA.
Следовательно, MK = NK.
Пусть A и B — точки пересечения двух окружностей, MN — общая касательная (M и N — точки касания), K — точка пересечения прямых AB и MN (A между K и B). Тогда
MK2 = KB . KA и NK2 = KB . KA.
Следовательно, MK = NK.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке