ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
Даны окружность и точка A. Найдите геометрическое место середин хорд, высекаемых данной окружностью на всевозможных прямых, проходящих через точку A.
Диагональ BD четырёхугольника ABCD является диаметром
окружности, описанной около этого четырёхугольника. Найдите
диагональ AC, если BD = 2, AB = 1,
|
Задача 52970
Условие
Диагональ BD четырёхугольника ABCD является диаметром
окружности, описанной около этого четырёхугольника. Найдите
диагональ AC, если BD = 2, AB = 1,
Подсказка
Треугольник BAD — прямоугольный.
РешениеПусть
cos
Поэтому
Пусть R — радиус окружности. Поскольку 2R = BD = 2, то
AC = 2R sin
= 2(sin 60ocos 45o + cos 60osin 45o) =
Ответ
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке