ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53207
Темы:    [ Отношение, в котором биссектриса делит сторону ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Дан треугольник ABC. Известно, что  AB = 4,  AC = 2  и  BC = 3.  Биссектриса угла BAC пересекает сторону BC в точке K. Прямая, проходящая через точку B параллельно AC, пересекает продолжение биссектрисы AK в точке M. Найдите KM.


Решение

  По свойству биссектрисы треугольника  BK : KC = AB : AC = 2 : 1.  Поэтому  BK = 2,  KC = 1.  Согласно задаче 53122  AK² = AB·AC – BK·KC = 6.
  Поскольку треугольники ACK и MBK подобны по двум углам,  KM = 2AK.


Ответ

2$ \sqrt{6}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 902

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .