Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.

Вниз   Решение


Точки M и N — середины равных сторон AD и BC четырёхугольника ABCD. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P. Докажите, что серединный перпендикуляр к отрезку MN проходит через точку P.

Вверх   Решение

Задача 53407
Темы:    [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Точки M и N — середины равных сторон AD и BC четырёхугольника ABCD. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P. Докажите, что серединный перпендикуляр к отрезку MN проходит через точку P.


Подсказка

Докажите, что точка P равноудалена от концов отрезка MN.


Решение

Медианы PM и PN равных треугольников APD и BPC равны, поэтому точка P равноудалена от концов отрезка MN и, следовательно, лежит на его серединном перпендикуляре.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1135

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .