Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Правильный (2n+1)-угольник разбили диагоналями на  2n – 1  треугольник. Докажите, что среди них по крайней мере три равнобедренных.

Вниз   Решение


В равнобедренном треугольнике MPK с основанием PM  ∠P = arctg 5/12.  Окружность, вписанная в угол K, касается стороны KP в точке A и отсекает от основания отрезок HE. Известно, что центр окружности удалён от вершины K на расстояние 13/24 и  AP = 6/5.  Найдите площадь треугольника HAE.

ВверхВниз   Решение


Из натуральных чисел составляются последовательности, в которых каждое последующее число больше квадрата предыдущего, а последнее число в последовательности равно 1969 (последовательности могут иметь разную длину). Доказать, что различных последовательностей такого вида меньше чем 1969.

ВверхВниз   Решение


Общие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны.
Докажите, что они пересекаются.

ВверхВниз   Решение


В пятиугольнике ABCDE углы ABC и AED – прямые,  AB = AE  и  BC = CD = DE.  Диагонали BD и CE пересекаются в точке F.
Докажите, что  FA = AB.

ВверхВниз   Решение


Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу пополам. Найдите углы треугольника.

Вверх   Решение

Задача 53940
Темы:    [ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3-
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу пополам. Найдите углы треугольника.


Подсказка

Если медиана треугольника является его высотой, то треугольник равнобедренный.


Решение

Пусть окружность, построенная как на диаметре на катете AC прямоугольного треугольника ABC, пересекает гипотенузу AB в её середине M. Тогда
AMC = 90°.  Значит, CM – высота и медиана треугольника ABC. Поэтому треугольник ABC равнобедренный. Следовательно,  AC = BC,  ∠A = ∠B = 45°.


Ответ

45°, 45°, 90°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1704

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .