ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите последние две цифры в десятичной записи числа 1! + 2! + ... + 2001! + 2002!. В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение SAFD : SABC, если AB : AC : BC = 21 : 28 : 20. Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A. Точка M расположена на стороне CD квадрата ABCD с центром O, причём CM : MD = 1 : 2. Математик с пятью детьми зашёл в пиццерию. Угол при вершине A ромба ABCD равен 20°. Точки M и
N – основания перпендикуляров, опущенных из вершины B на
стороны AD и CD. |
Задача 54088
УсловиеУгол при вершине A ромба ABCD равен 20°. Точки M и
N – основания перпендикуляров, опущенных из вершины B на
стороны AD и CD. ПодсказкаДокажите, что треугольник MBN – равнобедренный. РешениеИз равенства прямоугольных треугольников ABM и CBN следует, что B = BN, ∠ABM = ∠CBN = 70°. Поэтому ∠MBN = ∠ABC – 2∠ABM = 20°, а так как треугольник MBN равнобедренный, то ∠BMN = ∠BNM = ½ (180° – 20°) = 80°. Ответ20°, 80°, 80°. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке