ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов. На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.
Докажите, что площадь выпуклого четырёхугольника равна половине произведения его диагоналей на синус угла между ними.
|
Задача 54962
Условие
Докажите, что площадь выпуклого четырёхугольника равна половине произведения его диагоналей на синус угла между ними.
Подсказка
Площадь данного треугольника равна сумме площадей четырёх треугольников, на которые диагонали разбивают четырёхугольник.
Решение
Первый способ.
Пусть M — точка пересечения диагоналей AC и BD
четырёхугольника ABCD. Обозначим AM = x, BM = y, CM = z, DM = t,
SABCD = S
=
=
Второй способ.
Через каждую из двух противоположных вершин четырёхугольника проведём прямые, параллельные диагонали, соединяющей две другие вершины. То же проделаем для двух других вершин. Получим параллелограмм, стороны которого равны диагоналям данного четырёхугольника. Угол между соседними сторонами полученного параллелограмма равен углу между диагоналями данного четырёхугольника, а площадь вдвое больше. Поскольку площадь параллелограмма равна произведению двух соседних сторон на синус угла между ними, то площадь данного четырёхугольника равна половине произведения его диагоналей на синус угла между ними.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке