ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что для любого натурального числа n Продолжения сторон KN и LM выпуклого четырёхугольника KLMN пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN. Найдите сторону KL, если KQ = 12, NQ = 8, а площадь четырёхугольника KLMN равна площади треугольника LQM. Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали
нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только
сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов. На стороне BC треугольника ABC взята произвольная точка D. Через D и A проведены окружности ω1 и ω2 так, что прямая BA касается ω1, прямая CA касается ω2. BX – вторая касательная, проведённая из точки B к окружности ω1, CY – вторая касательная, проведённая из точки C к окружности ω2. Докажите, что описанная окружность треугольника XDY касается прямой BC.
Каждая сторона выпуклого четырёхугольника разделена на 8 равных частей. Соответствующие точки деления на противоположных сторонах соединены друг с другом, и полученные клетки раскрашены в шахматном порядке. Докажите, что сумма площадей черных клеток равна сумме площадей белых клеток.
|
Задача 55135
Условие
Каждая сторона выпуклого четырёхугольника разделена на 8 равных частей. Соответствующие точки деления на противоположных сторонах соединены друг с другом, и полученные клетки раскрашены в шахматном порядке. Докажите, что сумма площадей черных клеток равна сумме площадей белых клеток.
Подсказка
Докажите, что каждый из указанных отрезков, соединяющих соответствующие точки деления на противоположных сторонах, делятся на 8 равных частей.
Решение
Пусть M, N, K, L — середины сторон соответственно AB, BC, CD и AD выпуклого четырёхугольника ABCD (рис.1). Тогда четырёхугольник MNKL — параллелограмм. Его диагонали MK и NL делятся точкой пересечения Q пополам. Рассуждая аналогично докажем, что каждый из отрезков, соединяющих соответствующие точки деления на противоположных сторонах исходного четырёхугольника, делится на 8 равных частей. Осталось доказать, что утверждение задачи верно для выпуклого четырёхугольника, все стороны которого разделены пополам (рис.2). Для этого достаточно заметить, что треугольники с общей вершиной O и попарно равными основаниями попарно равновелики.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке