Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
  а) Докажите, что при  n = 98  первый всегда может выиграть.
  б) При каком наибольшем n первый всегда может выиграть?

Вниз   Решение


Даны окружность и точка A. Найдите геометрическое место середин хорд, высекаемых данной окружностью на всевозможных прямых, проходящих через точку A.

ВверхВниз   Решение


Диагональ BD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Найдите диагональ AC, если BD = 2, AB = 1, $ \angle$ABD : $ \angle$DBC = 4 : 3.

ВверхВниз   Решение


Автор: Храмцов Д.

Дано натуральное число  n ≥ 2.  Рассмотрим все такие покраски клеток доски n×n в k цветов, что каждая клетка покрашена ровно в один цвет и все k цветов встречаются. При каком наименьшем k в любой такой покраске найдутся четыре окрашенных в четыре разных цвета клетки, расположенные в пересечении двух строк и двух столбцов?

ВверхВниз   Решение


Сторона AD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Найдите сторону BC, если AD = 6, BD = 3$ \sqrt{3}$, $ \angle$BAC : $ \angle$CAD = 1 : 3.

ВверхВниз   Решение


Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через середину диагонали BD и пересекает сторону CD в точке K. Найдите отношение KD : CD, если BD = 2AC.

ВверхВниз   Решение


Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?

ВверхВниз   Решение


С помощью циркуля и линейки параллельно данной прямой проведите прямую, на которой две данные окружности высекали бы хорды, сумма (или разность) длин которых имела бы заданную величину a.

Вверх   Решение

Задача 55696
Темы:    [ Параллельный перенос. Построения и геометрические места точек ]
[ Диаметр, хорды и секущие ]
[ Перенос помогает решить задачу ]
Сложность: 4+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

С помощью циркуля и линейки параллельно данной прямой проведите прямую, на которой две данные окружности высекали бы хорды, сумма (или разность) длин которых имела бы заданную величину a.


Подсказка

Рассмотрите параллельный перенос одной из окружностей вдоль данной прямой на расстояние $ {\frac{a}{2}}$.


Решение

Рассмотрим случай, когда окружности расположены одна вне другой, и сумма указанных хорд имеет заданную величину a.

Предположим, что нужная прямая проведена. Пусть AB и CD — хорды данных окружностей S1 и S2, параллельные данной прямой l, и AB + CD = a (A, B, C и D — последовательные точки проведённой прямой).

При параллельном переносе на вектор $ \overrightarrow{BC}$ окружность S1 переходит в равную ей окружность S. Пусть Q1, Q2 и Q — проекции центров окружностей соответственно S1, S2 и S на проведённую прямую. Тогда Q1, Q2 и Q — середины соответствующих хорд. Поэтому

QQ2 = QC + CQ2 = $\displaystyle {\textstyle\frac{1}{2}}$AB + $\displaystyle {\textstyle\frac{1}{2}}$CD = $\displaystyle {\frac{a}{2}}$.

Отсюда вытекает следующий способ построения. Совершим параллельный перенос одной из окружностей вдоль данной прямой на расстояние, равное $ {\frac{a}{2}}$. Если образ S окружности S1 при этом переносе пересекает окружность S2 в точке C, то прямая, проходящая через точку C параллельно прямой l, — искомая.

Аналогичное решение для разности хорд.


Также доступны документы в формате TeX

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 5510

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .