ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите какие-нибудь семь последовательных натуральных чисел, каждое из которых можно изменить (увеличить или уменьшить) на 1 таким образом, чтобы произведение семи полученных в результате чисел равнялось произведению семи исходных чисел. Высота параллелограмма, проведённая из вершины тупого угла, равна 2 и делит сторону параллелограмма пополам. Острый угол параллелограмма равен 30°. Найдите диагональ, проведённую из вершины тупого угла, и углы, которые она образует со сторонами. На стороне AD параллелограмма ABCD взята точка P так, что
AP : AD = 1 : n, Q – точка пересечения прямых AC и BP. |
Задача 56461
УсловиеНа стороне AD параллелограмма ABCD взята точка P так, что
AP : AD = 1 : n, Q – точка пересечения прямых AC и BP. РешениеТак как треугольники AQP и CQB подобны, то AQ : QC = AP : BC = 1 : n. Поэтому AC = AQ + QC = (n + 1)AQ. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке