ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56470
Темы:    [ Отрезки, заключенные между параллельными прямыми ]
[ Две пары подобных треугольников ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

На продолжениях оснований AD и BC трапеции ABCD за точки A и C взяты точки K и L. Отрезок KL пересекает стороны AB и CD в точках M и N, а диагонали AC и BD в точках O и P. Докажите, что если  KM = NL,  то  KO = PL.


Решение

Проведём через точку M прямую EF, параллельную CD (точки E и F лежат на прямых BC и AD). Тогда   PL : PK = BL : KD  и
OK : OL = KA : CL = KA : KF = BL : EL.  Так как  KD = EL,  то  PL : PK = OK : OL,  а значит,  PL = OK.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 1
Название Отрезки, заключенные между параллельными прямыми
Тема Отрезки, заключенные между параллельными прямыми
задача
Номер 01.015

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .