ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56509
Темы:    [ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки подобия ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Из вершины C остроугольного треугольника ABC опущена высота CH, а из точки H опущены перпендикуляры HM и HN на стороны BC и AC соответственно. Докажите, что треугольники MNC и ABC подобны.


Решение

Так как точки M и N лежат на окружности с диаметром CH, то  ∠CMN = ∠CHN,  а так как  ACHN,  то  ∠CHN = ∠A.  Аналогично  ∠CNM = ∠B.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 5
Название Треугольник, образованный основаниями высот
Тема Треугольник, образованный основаниями двух высот и вершиной
задача
Номер 01.053

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .