Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Из 16 плиток размером 1×3 и одной плитки 1×1 сложили квадрат со стороной 7. Докажите, что плитка 1×1 лежит в центре квадрата или примыкает к его границе.

Вниз   Решение


Вокруг квадрата описан параллелограмм. Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют квадрат.

ВверхВниз   Решение


Квадрат разделен на четыре части двумя перпендикулярными прямыми, точка пересечения которых лежит внутри его. Докажите, что если площади трех из этих частей равны, то равны и площади всех четырех частей.

Вверх   Решение

Задача 56775
Тема:    [ Площадь четырехугольника ]
Сложность: 6
Классы: 9
Из корзины
Прислать комментарий

Условие

Квадрат разделен на четыре части двумя перпендикулярными прямыми, точка пересечения которых лежит внутри его. Докажите, что если площади трех из этих частей равны, то равны и площади всех четырех частей.

Решение

Пусть данные прямые l1 и l2 делят квадрат на четыре части, площади которых равны  S1, S2, S3 и S4, причем для первой прямой площади частей, на которые она делит квадрат, равны S1 + S2 и S3 + S4 а для второй они равны S2 + S3 и S1 + S4. Так как по условию  S1 = S2 = S3, то  S1 + S2 = S2 + S3. Это означает, что образ прямой l1 при повороте относительно центра квадрата на  +90o или  -90o не просто параллелен прямой l2, а совпадает с ней.
Остается доказать, что прямая l1 (а значит, и прямая l2) проходит через центр квадрата. Предположим, что это не верно. Рассмотрим образы прямых l1 и l2 при поворотах на  ±90o и обозначим площади частей, на которые они делят квадрат, так, как показано на рис. (на этом рисунке изображены оба различных варианта расположения прямых). Прямые l1 и l2 делят квадрат на четыре части, площади которых равны  a, a + b, a + 2b + c и a + b, причем числа a, b и c ненулевые. Ясно, что три из указанных четырех чисел не могут быть равны. Получено противоречие.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 4
Название Площадь
Тема Площадь
параграф
Номер 4
Название Площади частей, на которые разбит четырехугольник
Тема Площадь четырехугольника
задача
Номер 04.025

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .