Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В школе изучают 2n предметов. Все ученики учатся на 4 и 5. Никакие два ученика не учатся одинаково, ни про каких двух нельзя сказать, что один из них учится лучше другого. Доказать, что число учеников в школе не больше   .
(Мы считаем, что ученик p учится лучше ученика q, если у p оценки по всем предметам не ниже, чем у q, а по некоторым предметам – выше.)

Вниз   Решение


Точка, лежащая внутри описанного n-угольника, соединена отрезками со всеми вершинами и точками касания. Образовавшиеся при этом треугольники попеременно окрашены в красный и синий цвет. Докажите, что произведение площадей красных треугольников равно произведению площадей синих треугольников.

ВверхВниз   Решение


Решить в натуральных числах уравнение   x2y + (x + 1)2y = (x + 2)2y.

ВверхВниз   Решение


Докажите, что многочлен

P(x) = 1 + x + $\displaystyle {\frac{x^2}{2!}}$ +...+ $\displaystyle {\frac{x^n}{n!}}$

не имеет кратных корней.

Вверх   Решение

Задача 56802
Тема:    [ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 9
В корзину
Прислать комментарий

Условие

Длины сторон треугольника образуют арифметическую прогрессию. Докажите, что радиус вписанной окружности равен трети одной из высот треугольника.

Решение

Пусть длины сторон треугольника ABC равны a, b и c, причем  a $ \leq$ b $ \leq$ c. Тогда 2b = a + c и  2SABC = r(a + b + c) = 3rb, где r — радиус вписанной окружности. С другой стороны,  2SABC = hbb. Поэтому r = hb/3.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 4
Название Площадь
Тема Площадь
параграф
Номер 8
Название Вспомогательная площадь
Тема Вспомогательная площадь. Площадь помогает решить задачу
задача
Номер 04.051

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .