Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Анджанс А.

F(x) – возрастающая функция, определённая на отрезке  [0, 1].  Известно, что область её значений принадлежит отрезку  [0, 1].  Доказать, что, каково бы ни было натуральное n, график функции можно покрыть N прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна 1/n². (В прямоугольник мы включаем его внутренние точки и точки его границы.)

Вниз   Решение


Сумма нескольких положительных чисел равна 10, а сумма квадратов этих чисел больше 20. Докажите, что сумма кубов этих чисел больше 40.

ВверхВниз   Решение


Чему равны числа Фибоначчи с отрицательными номерами F-1, F-2, ..., F-n,...?


ВверхВниз   Решение


В связном графе степени четырёх вершин равны 3, а степени остальных вершин равны 4.
Докажите, что нельзя удалить ребро так, чтобы граф распался на две изоморфные компоненты связности.

ВверхВниз   Решение


Докажите, что точки, симметричные точке пересечения высот треугольника ABC относительно его сторон, лежат на описанной окружности.

Вверх   Решение

Задача 56839
Тема:    [ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8
Из корзины
Прислать комментарий

Условие

Докажите, что точки, симметричные точке пересечения высот треугольника ABC относительно его сторон, лежат на описанной окружности.

Решение

Пусть A1, B1 и C1 — точки, симметричные точке H относительно сторон BC, CA и AB соответственно. Так как  AB $ \perp$ CH и  BC $ \perp$ AH, то  $ \angle$(AB, BC) = $ \angle$(CH, HA), а так как треугольник AC1H равнобедренный, то  $ \angle$(CH, HA) = $ \angle$(AC1, C1C). Следовательно,  $ \angle$(AB, BC) = $ \angle$(AC1, C1C), т. е. точка C1 лежит на описанной окружности треугольника ABC. Аналогично доказывается, что точки A1 и B1 лежат на этой окружности.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 1
Название Вписанная и описанная окружности
Тема Вписанные и описанные окружности
задача
Номер 05.009

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .