Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

Рассмотрим все остроугольные треугольники с заданными стороной a и углом α.
Чему равен максимум суммы квадратов длин сторон b и c?

Вниз   Решение


На сторонах треугольника ABC внешним образом построены треугольники ABC', AB'C и A'BC, причем сумма углов при вершинах A', B' и C' кратна  180o. Докажите, что описанные окружности построенных треугольников пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что для любых x1,..., xn $ \in$ [0; $ \pi$] справедливо неравенство:

sin$\displaystyle \left(\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right.$$\displaystyle {\dfrac{x_1+\ldots+x_n}{n}}$$\displaystyle \left.\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right)$ $\displaystyle \geqslant$ $\displaystyle {\dfrac{\sin
x_1+\ldots+ \sin x_n}{n}}$.


ВверхВниз   Решение


На окружности даны точки A, B, C, D в указанном порядке;  A1, B1, C1 и D1 — середины дуг AB, BC, CD и DA соответственно. Докажите, что  A1C1 $ \perp$ B1D1.

ВверхВниз   Решение


Равносильны ли сравнения  a ≡ b (mod m)  и   ac ≡ bc (mod mc)?

ВверхВниз   Решение


В трапеции точка пересечения диагоналей равноудалена от прямых, на которых лежат боковые стороны. Докажите, что трапеция равнобедренная.

ВверхВниз   Решение


Имя входного файла:

numbers.in

Имя выходного файла:

numbers.out

Максимальное время работы на одном тесте:

1 секунда

Максимальный объем используемой памяти:

64 мегабайта

Максимальная оценка за задачу:

100 баллов

   

Саша считает красивыми числа, десятичная запись которых не содержит других цифр, кроме 0 и k (1 ? k ? 9). Например, если k = 2, то такими числами будут 2, 20, 22, 2002 и т.п. Остальные числа Саше не нравятся, поэтому он представляет их в виде суммы красивых чисел. Например, если k = 3, то число 69 можно представить так: 69 = 33 + 30 + 3 + 3.

Однако, не любое натуральное число можно разложить в сумму красивых целых чисел. Например, при k = 5 число 6 нельзя представить в таком виде. Но если использовать красивые десятичные дроби, то это можно сделать: 6 = 5.5 + 0.5.

Недавно Саша изучил периодические десятичные дроби и начал использовать и их в качестве слагаемых. Например, если k = 3, то число 43 можно разложить так: 43 = 33.(3) + 3.(3) + 3 + 3.(3).

Оказывается, любое натуральное число можно представить в виде суммы положительных красивых чисел. Но такое разложение не единственно - например, число 69 можно также представить и как 69 = 33 + 33 + 3. Сашу заинтересовало, какое минимальное количество слагаемых требуется для представления числа n в виде суммы красивых чисел.

Требуется написать программу, которая для заданных чисел n и k находит разложение числа n в сумму положительных красивых чисел с минимальным количеством слагаемых.

Формат входных данных

Во входном файле записаны два натуральных числа n и k (1 ≤ n ≤ 109; 1≤ k ≤ 9).

Формат выходных данных

В выходной файл выведите разложение числа n в сумму положительных чисел, содержащих только цифры 0 и k, количество слагаемых в котором минимально. Разложение должно быть представлено в виде:

n=a1+a2+...+am

Слагаемые a1, a2, ..., am должны быть выведены без ведущих нулей, без лишних нулей в конце дробной части. Запись каждого слагаемого должна быть такой, что длины периода и предпериода дробной части имеют минимально возможную длину. Например, неправильно выведены числа: 07.7; 2.20; 55.5(5); 0.(66); 7.(0); 7. ; .5; 0.33(03). Их следует выводить так: 7.7; 2.2; 55.(5); 0.(6); 7; 7; 0.5; 0.3(30).

Предпериод и период каждого из выведенных чисел должны состоять не более чем из 100 цифр. Гарантируется, что хотя бы одно такое решение существует. Если искомых решений несколько, выведите любое. Порядок слагаемых может быть произвольным.

Выходной файл не должен содержать пробелов.

Примеры

numbers.in

numbers.out

69 3

69=33+33+3

6 5

6=5.5+0.5

10 9

10=9.(9)

ВверхВниз   Решение


Доказать, что если     то  x4 + a1x³ + a2x² + a3x + a4  делится на  (x – x0)².

ВверхВниз   Решение


Докажите, что треугольники с длинами сторон a, b, c и a1, b1, c1 подобны тогда и только тогда, когда  

ВверхВниз   Решение


В треугольнике ABC с углом A, равным  120o, биссектрисы AA1, BB1 и CC1 пересекаются в точке O. Докажите, что  $ \angle$A1C1O = 30o.

Вверх   Решение

Задача 56865
Тема:    [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В треугольнике ABC с углом A, равным  120o, биссектрисы AA1, BB1 и CC1 пересекаются в точке O. Докажите, что  $ \angle$A1C1O = 30o.

Решение

Согласно решению задачи 5.30 луч A1C1 является биссектрисой угла AA1B. Пусть K — точка пересечения биссектрис треугольника A1AB. Тогда  $ \angle$C1KO = $ \angle$A1KB = 90o + $ \angle$A/2 = 120o. Поэтому  $ \angle$C1KO + $ \angle$C1AO = 180o, т. е. четырехугольник AOKC1 вписанный. Следовательно,  $ \angle$A1C1O = $ \angle$KC1O = $ \angle$KAO = 30o.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 4
Название Треугольники с углами 60 и 120 градусов
Тема Треугольники с углами $60^\circ$ и $120^\circ$
задача
Номер 05.031

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .