|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, кратное 11. |
Задача 56940
УсловиеНа окружности фиксированы точки P и C; точки A и B перемещаются по окружности так, что угол ACB остается постоянным. Докажите, что прямые Симсона точки P относительно треугольников ABC касаются фиксированной окружности.Решение. Пусть A1 и B1 — основания перпендикуляров, опущенных из точки P на прямые BC и AC. Точки A1 и B1 лежат на окружности с диаметром PC. Так как sin A1CB1 = sin ACB, хорды A1B1 этой окружности имеют фиксированную длину. Следовательно, прямые A1B1 касаются фиксированной окружности.Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|