ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57112
Тема:    [ Теорема Паскаля ]
Сложность: 6+
Классы: 9
В корзину
Прислать комментарий

Условие

Две окружности касаются описанной окружности треугольника ABC в точке K; кроме того, одна из этих окружностей касается стороны AB в точке M, а другая касается стороны AC в точке N. Докажите, что центр вписанной окружности треугольника ABC лежит на прямой MN.

Решение

Пусть B1 и C1 — середины дуг AC и AB (имеются в виду дуги, не содержащие точек B и C соответственно). Согласно задаче 3.42, а) точки M и N лежат на отрезках KC1 и KB1.
Применим теорему Паскаля к шестиугольнику C1CABB1K. Прямые CC1 и BB1 — биссектрисы; прямые CA и B1K пересекаются в точке N, прямые AB и C1K — в точке M.
Отметим, что задача 3.45 является частным случаем этой задачи.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 6
Название Многоугольники
Тема Многоугольники
параграф
Номер 9
Название Теорема Паскаля
Тема Теорема Паскаля
задача
Номер 06.096.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .