ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Обозначим корни уравнения x² + px + q = 0 через x1, x2. Нарисуйте на фазовой плоскости Opq множества точек M(, q),
которые задаются условиями:
В прямоугольном треугольнике ABC с прямым углом C, углом B, равным 30o, и катетом CA = 1, проведена медиана CD. Кроме того, из точки D под углом 15o к гипотенузе проведена прямая, пересекающая отрезок BC в точке F. Найдите площадь треугольника CDF. Укажите её приближённое значение в виде десятичной дроби с точностью до 0,01.
В треугольнике ABC проведена биссектриса CQ. Около треугольника BCQ описана окружность радиуса 1/3, центр которой лежит на отрезке AC.
С помощью циркуля и линейки постройте окружность данного радиуса, касающуюся двух данных окружностей.
Докажите, что для двух непересекающихся окружностей R1 и R2
цепочка из n касающихся окружностей (см. предыдущую задачу)
существует тогда и только тогда, когда угол между окружностями T1
и T2, касающимися R1 и R2 в точках их пересечения с прямой,
соединяющей центры, равен целому кратному угла
360o/n (рис.).
В классе учится меньше 50 школьников. За контрольную работу седьмая часть учеников получила пятёрки, третья – четвёрки, половина – тройки. Остальные работы были оценены как неудовлетворительные. Сколько было таких работ? Точки
A1,..., A6 лежат на одной окружности,
а точки K, L, M и N — на прямых
A1A2, A3A4, A1A6 и A4A5
соответственно, причем
KL| A2A3, LM| A3A6 и
MN| A6A5.
Докажите, что
NK| A5A2.
|
Задача 57114
УсловиеТочки
A1,..., A6 лежат на одной окружности,
а точки K, L, M и N — на прямых
A1A2, A3A4, A1A6 и A4A5
соответственно, причем
KL| A2A3, LM| A3A6 и
MN| A6A5.
Докажите, что
NK| A5A2.
РешениеПусть P и Q — точки пересечения прямой A3A4 с A1A2 и A1A6, а R и S — точки пересечения прямой A4A5 с A1A6 и A1A2. Тогда A2K : A3L = A2P : A3P, A3L : A6M = A3Q : A6Q и A6M : A5N = A6R : A5R. Поэтому требуемое соотношение A2K : A5N = A2S : A5S перепишется в виде Пусть T — точка пересечения прямых A2A3 и A5A6; по теореме Паскаля точки S, Q и T лежат на одной прямой. Применяя теорему Менелая (см. задачу 5.58) к треугольнику PQS и точкам T, A2 и A3, а также к треугольнику RQS и точкам T, A5 и A6, получаем Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке