Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Король решил уволить в отставку премьер-министра, но не хотел его обидеть. Когда премьер-министр пришёл к королю, тот сказал: "В этот портфель я положил два листа бумаги. На одном из них написано "`Останьтесь"', на другом  — "`Уходите"'. Листок, который вы сейчас не глядя вытянете из портфеля, решит вашу судьбу". Премьер-министр догадался, что на обоих листках написано "Уходите". Однако ему удалось сделать так, что король его оставил. Как поступил премьер-министр?

Вниз   Решение


Покупатель взял у продавца товара на 10 р. и дал 25 р. У продавца не нашлось сдачи, и он разменял деньги у соседа. Когда они расплатились и покупатель ушёл, сосед обнаружил, что 25 р. фальшивые. Продавец вернул соседу 25 р. и задумался. Какой убыток понёс продавец?

ВверхВниз   Решение


Федя всегда говорит правду, а Вадим всегда лжёт. Какой вопрос надо было бы им задать, чтобы они дали на него одинаковые ответы?

ВверхВниз   Решение


На прямой даны 3 точки A, B, C. На отрезке AB построен равносторонний треугольник ABC1, на отрезке BC построен равносторонний треугольник BCA1. Точка M — середина отрезка AA1, точка N — середина отрезка CC1. Доказать, что треугольник BMN — равносторонний. (Точка B лежит между точками A и C; точки A1 и C1 расположены по одну сторону от прямой AB.)

ВверхВниз   Решение


Докажите, что при  a, b, c > 0  имеет место неравенство  

ВверхВниз   Решение


Впишите в данный треугольник ABC прямоугольник PQRS (вершины R и Q лежат на сторонах AB и BCP и S — на стороне AC) так, чтобы его диагональ имела данную длину.

Вверх   Решение

Задача 57232
Тема:    [ Треугольник (построения) ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Впишите в данный треугольник ABC прямоугольник PQRS (вершины R и Q лежат на сторонах AB и BCP и S — на стороне AC) так, чтобы его диагональ имела данную длину.

Решение

Пусть точка B' лежит на прямой l, проходящей через точку B параллельно AC. Стороны треугольников ABC и AB'C высекают на прямой, параллельной AC, равные отрезки. Поэтому прямоугольники P'R'Q'S' и PRQS, вписанные в треугольники ABC и AB'C соответственно, равны, если точки R, Q, R' и Q' лежат на одной прямой.
Возьмем точку B' на прямой l так, что  $ \angle$B'AC = 90o. В треугольник AB'C прямоугольник P'R'Q'S' с данной диагональю P'Q' вписывается очевидным образом (P' = A). Проведя прямую R'Q', находим вершины R и Q искомого прямоугольника.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 8
Название Построения
Тема Построения
параграф
Номер 6
Название Треугольник
Тема Треугольник (построения)
задача
Номер 08.038

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .