ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57544
Темы:    [ Угол (экстремальные свойства) ]
[ Центральная симметрия помогает решить задачу ]
[ Перегруппировка площадей ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Дан угол XAY и точка O внутри его. Проведите через точку O прямую, отсекающую от данного угла треугольник наименьшей площади.

Решение

Рассмотрим угол X'A'Y', симметричный углу XAY относительно точки O. Пусть B и C — точки пересечения сторон этих углов. Обозначим точки пересечения прямой, проходящей через точку O, со сторонами углов XAY и X'A'Y' через B1, C1 и B1', C1' соответственно (рис.). Так как SAB1C1 = SA'B1'C1', то SAB1C1 = (SABA'C + SBB1C1' + SCC1B1')/2. Площадь треугольника AB1C1 минимальна, если B1 = B и C1 = C, т. е. искомой прямой является BC.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 11
Название Задачи на максимум и минимум
Тема Экстремальные свойства. Задачи на максимум и минимум.
параграф
Номер 3
Название Угол
Тема Угол (экстремальные свойства)
задача
Номер 11.024

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .