ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Окружности ω1 и ω2 касаются внешним образом в точке P. Через центр ω1 проведена прямая l1, касающаяся ω2. Аналогично прямая l2 касается ω1 и проходит через центр ω2. Оказалось, что прямые l1 и l2 непараллельны. Докажите, что точка P лежит на биссектрисе одного из углов, образованных l1 и l2.
Докажите, что геометрическая прогрессия
{an} = bx0n
удовлетворяет соотношению (11.2
) тогда и только тогда,
когда x0
-- корень характеристического уравнения (11.3
) последовательности
{an}.
На плоскости даны две точки A и B. Пусть C – некоторая точка плоскости, равноудалённая от точек A и B. Построим последовательность точек Даны выпуклый n-угольник с попарно непараллельными сторонами и точка O внутри его. Докажите, что через точку O нельзя провести
более n прямых, каждая из которых делит площадь n-угольника пополам.
|
Задача 57845
УсловиеДаны выпуклый n-угольник с попарно непараллельными сторонами и точка O внутри его. Докажите, что через точку O нельзя провести
более n прямых, каждая из которых делит площадь n-угольника пополам.
РешениеРассмотрим многоугольник, симметричный исходному относительно точки O.
Так как стороны многоугольника попарно непараллельны, контуры этих
многоугольников не могут иметь общих отрезков, а могут иметь только общие
точки. А так как многоугольники выпуклые, на каждой стороне лежит не
более двух точек пересечения; поэтому имеется не более 2n точек
пересечения контуров (точнее, n пар симметричных относительно O точек).
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке