ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В школе изучают 2n предметов. Все ученики учатся на 4 и 5. Никакие два
ученика не учатся одинаково, ни про каких двух нельзя сказать, что один из них
учится лучше другого. Доказать, что число учеников в школе не больше Точка, лежащая внутри описанного n-угольника,
соединена отрезками со всеми вершинами и точками касания.
Образовавшиеся при этом треугольники попеременно окрашены
в красный и синий цвет. Докажите, что произведение площадей красных
треугольников равно произведению площадей синих треугольников.
Решить в натуральных числах уравнение x2y + (x + 1)2y = (x + 2)2y.
P(x) = 1 + x + не имеет кратных
корней.
|
Задача 58115
УсловиеНазовем выпуклый семиугольник особым, если три
его диагонали пересекаются в одной точке. Докажите, что,
слегка пошевелив одну из вершин особого семиугольника,
можно получить неособый семиугольник.
РешениеПусть P — точка пересечения диагоналей A1A4 и A2A5
выпуклого семиугольника
A1...A7. Одна из диагоналей A3A7
и A3A6, для определенности диагональ A3A6, не проходит через
точку P. Точек пересечения диагоналей шестиугольника
A1...A6
конечное число, поэтому вблизи точки A7 можно выбрать такую
точку A7', что прямые
A1A7',..., A6A7' не проходят
через эти точки, т. е. семиугольник
A1...A7' неособый.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке