Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

Вниз   Решение


Какое наибольшее количество множителей вида     можно вычеркнуть в левой части уравнения     так, чтобы число его натуральных корней не изменилось?

ВверхВниз   Решение


На плоскости расположено несколько непересекающихся отрезков. Всегда ли можно соединить концы некоторых из них отрезками так, чтобы получилась замкнутая несамопересекающаяся ломаная?

Вверх   Решение

Задача 58304
Тема:    [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 5
Классы: 8,9
Из корзины
Прислать комментарий

Условие

На плоскости расположено несколько непересекающихся отрезков. Всегда ли можно соединить концы некоторых из них отрезками так, чтобы получилась замкнутая несамопересекающаяся ломаная?

Решение

Не всегда. Рассмотрим отрезки, изображенные на рис. Концы каждого короткого отрезка можно соединить только с концами ближайшего к нему длинного отрезка. Ясно, что при этом не может получиться замкнутая несамопересекающаяся ломаная.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 26
Название Системы точек и отрезков. Примеры и контрпримеры
Тема Системы точек и отрезков
параграф
Номер 3
Название Примеры и контрпримеры
Тема Системы точек и отрезков. Примеры и контрпримеры
задача
Номер 26.021

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .