ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Собралось n человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек. Докажите, что нетождественное проективное преобразование прямой
имеет не более двух неподвижных точек.
Докажите, что касающиеся окружности (окружность
и прямая) переходят при инверсии в касающиеся окружности
или в окружность и прямую, или в пару параллельных прямых.
|
Задача 58321
УсловиеДокажите, что касающиеся окружности (окружность
и прямая) переходят при инверсии в касающиеся окружности
или в окружность и прямую, или в пару параллельных прямых.
РешениеЕсли точка касания не совпадает с центром инверсии, то
после инверсии эти окружности (окружность и прямая) будут
по-прежнему иметь одну общую точку, т. е. касание сохранится.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке