ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Обозначим корни уравнения x² + px + q = 0 через x1, x2. Нарисуйте на фазовой плоскости Opq множества точек M(, q),
которые задаются условиями:
В прямоугольном треугольнике ABC с прямым углом C, углом B, равным 30o, и катетом CA = 1, проведена медиана CD. Кроме того, из точки D под углом 15o к гипотенузе проведена прямая, пересекающая отрезок BC в точке F. Найдите площадь треугольника CDF. Укажите её приближённое значение в виде десятичной дроби с точностью до 0,01.
В треугольнике ABC проведена биссектриса CQ. Около треугольника BCQ описана окружность радиуса 1/3, центр которой лежит на отрезке AC.
С помощью циркуля и линейки постройте окружность данного радиуса, касающуюся двух данных окружностей.
Докажите, что для двух непересекающихся окружностей R1 и R2
цепочка из n касающихся окружностей (см. предыдущую задачу)
существует тогда и только тогда, когда угол между окружностями T1
и T2, касающимися R1 и R2 в точках их пересечения с прямой,
соединяющей центры, равен целому кратному угла
360o/n (рис.).
|
Задача 58358
УсловиеДокажите, что для двух непересекающихся окружностей R1 и R2
цепочка из n касающихся окружностей (см. предыдущую задачу)
существует тогда и только тогда, когда угол между окружностями T1
и T2, касающимися R1 и R2 в точках их пересечения с прямой,
соединяющей центры, равен целому кратному угла
360o/n (рис.).
РешениеЦентр инверсии, переводящей окружности R1 и R2 в концентрические,
лежит (см. решение задачи 28.6) на линии их центров.
Поэтому, сделав эту инверсию и учтя, что угол между окружностями
и касание при этом сохраняется, мы сведем доказательство к случаю
концентрических окружностей R1 и R2 с центром O и радиусами r1
и r2.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке