ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В остроугольном треугольнике ABC проведены
медиана AM, биссектриса BK и высота CH. Может ли
площадь треугольника, образованного точками пересечения
этих отрезков, быть больше
0, 499SABC?
а) Можно ли разложить 20 монет достоинством в 1, 2, 3, ..., 19, 20 мунгу по трём карманам так, чтобы в каждом кармане оказалась одинаковая сумма денег? б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.)
Даны отрезки a и b. С помощью циркуля и линейки постройте отрезок
Биссектриса и высота, проведённые из одной вершины некоторого треугольника, делят его противоположную сторону на три отрезка. Найдите конечную арифметическую прогрессию с разностью 6 максимальной длины, состоящую из простых чисел. |
Задача 60694
УсловиеНайдите конечную арифметическую прогрессию с разностью 6 максимальной длины, состоящую из простых чисел. ПодсказкаСреди любых пяти последовательных членов такой арифметической прогрессии один обязательно делится на 5. Если это не 5, то простых чисел, идущих подряд, будет не более четырёх. Ответ5, 11, 17, 23, 29. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке