ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Найдите координаты вершин треугольника, стороны которого лежат на прямых 2x + y - 6 = 0, x - y + 4 = 0 и y + 1 = 0.
Через точку X, лежащую внутри треугольника ABC,
проведены три отрезка, антипараллельных его сторонам. Докажите, что эти
отрезки равны тогда и только тогда, когда X — точка Лемуана.
Даны точки A(0; - 2), B(- 2;1), C(0;0) и D(2; - 9). Укажите те из них, которые лежат на прямой 2x - 3y + 7 = 0.
Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся? p – простое число. Сколько существует способов раскрасить вершины правильного p-угольника в a цветов? (Раскраски, которые можно совместить поворотом, считаются одинаковыми.) |
Задача 60743
Условиеp – простое число. Сколько существует способов раскрасить вершины правильного p-угольника в a цветов? (Раскраски, которые можно совместить поворотом, считаются одинаковыми.) РешениеЗабудем временно про совмещение раскрасок поворотами. Тогда p вершин можно раскрасить ap способами (см. задачу 60348). Среди этих раскрасок есть a одноцветных. Каждая из оставшихся совмещается с p раскрасками (считая исходную). Поэтому различных неодноцветных раскрасок в p раз меньше: Ответ
Замечания1. Из этого результата немедленно следует малая теорема Ферма (см. задачу 60736). 2. Подумайте, почему важна простота числа p. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке