ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Через вершины А и С треугольника АВС проведены прямые, перпендикулярные биссектрисе угла АВС. Они пересекают прямые СВ и ВА в точках К и М соответственно. Найдите длину АВ, если ВМ = 8 см, KC = 1 см и АВ > ВС. В окружность радиуса 10 вписан четырёхугольник, диагонали которого перпендикулярны и равны 12 и 10 Найдите все значения корней: Существует следующий способ проверить, делится ли данное число N на
19:
``65 = 64 = 63''.
Тождество Кассини
лежит в основе одного геометрического
парадокса. Он заключается в том, что можно взять шахматную доску,
разрезать ее на четыре части, как показано ниже, а затем
составить из этих же частей прямоугольник:
Пусть z1, ..., zn – отличные от
нуля комплексные числа, лежащие в полуплоскости α < arg z < α + π. Докажите, что
Постройте прямоугольный треугольник по гипотенузе и проекции одного из катетов на гипотенузу.
Найдите все числа вида 13xy45z, которые делятяс на 792. Четырёхугольник ABCD вписан в окружность радиуса R. Его диагонали взаимно перпендикулярны и пересекаются в точке P. Докажите, что при любом натуральном n число n² + 8n + 15 не делится на n + 4. Известно, что z + z–1 = 2 cos α. |
Задача 61108
УсловиеИзвестно, что z + z–1 = 2 cos α. ПодсказкаПерейдите в равенстве z + z–1 = 2 cos α к сопряженным числам и вычислите z. Решение а) Если z + z–1 = 2 cos α, то и б) zn + z–n = (cos α + i sin α)n + (cos α – i sin α)n = =
Ответб) Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке