Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Последовательность чисел {xn} задана условиями:

x1 $\displaystyle \geqslant$ - a,        xn + 1 = $\displaystyle \sqrt{a+x_n}$.

Докажите, что последовательность {xn} монотонна и ограничена. Найдите ее предел.

Вниз   Решение


На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD взяты соответственно точки P, Q, R и Sб  O – точка пересечения отрезков PR и QS.
Докажите,что если  AP : AB = DR : DC  и  AS : AD = BQ : BC,  то и  SO : SQ = AP : ABPQ : PR = AS : ;AD.

ВверхВниз   Решение


Докажите, что при любых целых a и натуральном n выражение  (a + 1)2n+1 + an+2  делится на  a² + a + 1.

Вверх   Решение

Задача 61138
Тема:    [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Докажите, что при любых целых a и натуральном n выражение  (a + 1)2n+1 + an+2  делится на  a² + a + 1.


Решение

Пусть  b = a² + a + 1.  Заметим, что  a + 1 ≡ – a² (mod b),  a³ ≡ 1 (mod b).  Поэтому
(a + 1)2n+1 + an+2 ≡ – a4n+2 + an+2 ≡ – an+2 + an+2 ≡ 0 (mod b),  что и требовалось.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 7
Название Комплексные числа
Тема Неизвестная тема
параграф
Номер 1
Название Комплексная плоскость
Тема Неизвестная тема
задача
Номер 07.074

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .