ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Последовательность чисел {xn} задана условиями:
x1 Докажите, что
последовательность {xn} монотонна и ограничена. Найдите ее
предел.
На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD взяты соответственно точки P, Q, R и Sб O – точка пересечения отрезков PR и QS. Докажите, что при любых целых a и натуральном n выражение (a + 1)2n+1 + an+2 делится на a² + a + 1. |
Задача 61138
УсловиеДокажите, что при любых целых a и натуральном n выражение (a + 1)2n+1 + an+2 делится на a² + a + 1. РешениеПусть b = a² + a + 1. Заметим, что a + 1 ≡ – a² (mod b), a³ ≡ 1 (mod b). Поэтому Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке