ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61170
Темы:    [ Геометрические интерпретации в алгебре ]
[ Многочлены (прочее) ]
[ Формула Герона ]
[ Неравенства для площади треугольника ]
Сложность: 4
Классы: 10,11
В корзину
Прислать комментарий

Условие

Пусть x, y, z – положительные числа и  xyz(x + y + z) = 1.  Найдите наименьшее значение выражения  (x + y)(x + z).


Подсказка

Сделайте замены  x = p – ay = p – bz = p – c.


Решение

Положим  a = y + z,  b = x + z,  c = x + y,  p = x + y + z.  Рассмотрим треугольник со сторонами a, b, c (неравенства треугольника, очевидно, выполнены). Периметр этого треугольника равен 2p, а площадь обозначим через S. По формуле Герона
S² = p(p – a)(p – b)(p – c) = (x + y + z)xyz = 1,  поэтому  (x + y)(x + z) = bc ≥ 2S = 2.  Равенство достигается для прямоугольного треугольника,

(например,     соответственно,  


Ответ

2.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 8
Название Алгебра + геометрия
Тема Неопределено
параграф
Номер 1
Название Геометрия помогает алгебре
Тема Неопределено
задача
Номер 08.009

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .