Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда

a'(b - c) + b'(c - a) + c'(a - b) = 0.


Вниз   Решение


Докажите, что барицентрические координаты точки X, лежащей внутри треугольника ABC, равны (SBCX : SCAX : SABX).

ВверхВниз   Решение


Вадим и Лёша спускались с горы. Вадим шёл пешком, а Лёша съезжал на лыжах в семь раз быстрее Вадима. На полпути Лёша упал, сломал лыжи и ногу и пошёл в два раза медленней Вадима. Кто первым спустится с горы?

ВверхВниз   Решение


Найти все рациональные положительные решения уравнения  xy = yx  (x ≠ y).

ВверхВниз   Решение


Имеется неограниченное количество плиток в форме многоугольника M. Будем говорить, что из этих плиток можно сложить паркет, если ими можно покрыть круг сколь угодно большого радиуса так, чтобы не было ни просветов, ни перекрытий.
а) Докажите, что если M — выпуклый n-угольник, где n$ \ge$7, то паркет сложить нельзя.
б) Приведите пример такого выпуклого пятиугольника с попарно непараллельными сторонами, что паркет сложить можно.

ВверхВниз   Решение


Автор: Храбров А.

Числа a, b, c и d таковы, что  a² + b² + c² + d² = 4.  Докажите, что  (2 + a)(2 + b) ≥ cd.

ВверхВниз   Решение


В классе 33 ученика, всем вместе 430 лет.
Докажите, что если выбрать 20 самых старших из них, то им вместе будет не меньше, чем 260 лет. (Возраст любого ученика – целое число.)

Вверх   Решение

Задача 64433
Темы:    [ Принцип Дирихле (прочее) ]
[ Средние величины ]
Сложность: 3
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

В классе 33 ученика, всем вместе 430 лет.
Докажите, что если выбрать 20 самых старших из них, то им вместе будет не меньше, чем 260 лет. (Возраст любого ученика – целое число.)


Решение

Суммарный возраст "старшей" группы не меньше чем  20/33·430 = 260,6...  лет.

Замечания

Из решения видно, что целочисленность возрастов несущественна. Но если её учитывать, то можно утверждать, что суммарный возраст старшей группы не меньше 261 года. Эта оценка точна: если одному ученику 14 лет, а остальным – по 13, то сумма возрастов двадцати "старших" равна 261.

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2013/14
класс
Класс 9
задача
Номер 9.5.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .