ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На плоскости даны две окружности $\omega_{1}$ и $\omega_{2}$, касающиеся внешним образом. На окружности $\omega_{1}$ выбран диаметр $AB$, а на окружности $\omega_{2}$ выбран диаметр $CD$. Рассмотрим всевозможные положения точек $A$, $B$, $C$ и $D$, при которых $ABCD$ — выпуклый описанный четырёхугольник, и пусть $I$ — центр его вписанной окружности. Найдите геометрическое место точек $I$. В каждой клетке полоски длины 100 стоит по фишке. Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно три фишки. За какое наименьшее количество рублей можно переставить фишки в обратном порядке? Существуют ли 100 таких натуральных чисел, среди которых нет одинаковых, что куб одного из них равен сумме кубов остальных? Внутри параллелограмма $ABCD$ взята такая точка $P$, что ∠$PDA$ = ∠$PBA$. Пусть Ω – вневписанная окружность треугольника $PAB$, лежащая против вершины $A$, а ω – вписанная окружность треугольника $PCD$. Докажите, что одна из общих касательных к Ω и ω параллельна $AD$. Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1? Царь вызвал двух мудрецов. Он дал первому 100 пустых карточек и приказал написать на каждой по натуральному числу (числа не обязательно разные), не показывая их второму. Затем первый может сообщить второму несколько различных чисел, каждое из которых либо записано на какой-то карточке, либо равно сумме чисел на каких-то карточках (не уточняя, как именно каждое число получено). Второй должен определить, какие 100 чисел написаны на карточках. Если он этого не сможет, обоим отрубят головы; иначе из бороды каждого вырвут столько волосков, сколько чисел сообщил первый второму. Как мудрецам, не сговариваясь, остаться в живых и потерять минимальное количество волосков? Даны 15 целых чисел, среди которых нет одинаковых. Петя записал на доску все возможные суммы по 7 из этих чисел, а Вася – все возможные суммы по 8 из этих чисел. Могло ли случиться, что они выписали на доску одни и те же наборы чисел? (Если какое-то число повторяется несколько раз в наборе у Пети, то и у Васи оно должно повторяться столько же раз.) |
Задача 64843
УсловиеДаны 15 целых чисел, среди которых нет одинаковых. Петя записал на доску все возможные суммы по 7 из этих чисел, а Вася – все возможные суммы по 8 из этих чисел. Могло ли случиться, что они выписали на доску одни и те же наборы чисел? (Если какое-то число повторяется несколько раз в наборе у Пети, то и у Васи оно должно повторяться столько же раз.) РешениеРассмотрим набор из семи различных натуральных чисел, семи противоположных им чисел и нуля. Пусть S = a1 + a2 + ... + a7 – сумма произвольных семи чисел из этого набора. Тогда сумма оставшихся восьми чисел a8, a9, ..., a15 равна – S (так как сумма всех 15 чисел равна нулю). Значит, сумма восьми чисел – a8, – a9, ..., – a15 (которые также входят в наш набор) равна S. Соответствие между семёрками {a1, a2, ..., a7} и восьмёрками {– a8, – a9, ..., – a15}, очевидно, взаимно однозначно. ОтветМогло. Замечания5 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке