Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.

Вниз   Решение


На сторонах AB, BC, CA правильного треугольника ABC найти такие точки X, Y, Z (соответственно), чтобы площадь треугольника, образованного прямыми CX, BZ, AY, была вчетверо меньше площади треугольника ABC и чтобы было выполнено условие: $$\frac{AX}{XB}=\frac{BY}{YC}=\frac{CZ}{ZA}.$$

ВверхВниз   Решение


Известно, что  x + 2y + 3z = 1.  Какое минимальное значение может принимать выражение  x² + y² + z²?

ВверхВниз   Решение


Продолжение медианы AM треугольника ABC пересекает его описанную окружность в точке D. Найдите BC, если  AC = DC = 1.

ВверхВниз   Решение


Автор: Фольклор

Постройте такое подмножество круга, площадью в половину площади круга, что его образ при симметрии относительно любого диаметра пересекается с ним по площади, равной четверти круга.

Вверх   Решение

Задача 64877
Темы:    [ Отношения площадей подобных фигур ]
[ Площадь круга, сектора и сегмента ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Автор: Фольклор

Постройте такое подмножество круга, площадью в половину площади круга, что его образ при симметрии относительно любого диаметра пересекается с ним по площади, равной четверти круга.


Решение

Построим круг, концентричный данному, вдвое меньшей площади. Разделим внутренний круг пополам произвольным диаметром, а внешнее кольцо – перпендикулярным диаметром. Объединив половину внутреннего круга с половиной внешнего кольца, получим искомое множество.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2014
тур
задача
Номер 14

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .