ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным? Выпуклые многогранники A и B не имеют общих точек. Многогранник A имеет ровно 2012 плоскостей симметрии. Каково наибольшее возможное количество плоскостей симметрии у фигуры, состоящей из A и B, если B имеет Расстояние между Атосом и Арамисом, скачущими по одной дороге, равно 20 лье. За час Атос покрывает 4 лье, а Арамис – 5 лье. Я иду от дома до школы 30 минут, а мой брат – 40 минут. Через сколько минут я догоню брата, если он вышел из дома на 5 минут раньше меня? Турист шел 3,5 часа, причём за каждый промежуток времени в один час он проходил ровно 5 км. Три окружности касаются друг друга извне и касаются четвёртой окружности изнутри. Их центры были отмечены, а сами окружности стёрты. Оказалось, что невозможно установить, какая из отмеченных точек – центр объемлющей окружности. Докажите, что отмеченные точки образуют прямоугольник. Трапеция АВСD с основаниями AB и CD вписана в окружность. Докажите, что четырёхугольник, образованный ортогональными проекциями любой точки этой окружности на прямые AC, BC, AD и BD, является вписанным. а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться? б) Тот же вопрос для решётки 7×7 (всего 64 узла). Существует ли неравнобедренный треугольник, у которого медиана, проведённая из одной вершины, биссектриса, проведённая из другой, и высота, проведённая из третьей, равны? |
Задача 65045
УсловиеСуществует ли неравнобедренный треугольник, у которого медиана, проведённая из одной вершины, биссектриса, проведённая из другой, и высота, проведённая из третьей, равны? РешениеЗафиксируем вершины A, B, построим точку D, симметричную A относительно B, и возьмём точку C так, что ∠BCD = 150°. Тогда высота AK треугольника ABC равна высоте DH треугольника BCD, то есть ½ CD. С другой стороны, медиана BM является средней линией треугольника ACD, то есть тоже равна ½ CD (см. рис.). Будем теперь двигать точку C по дуге BD, вмещающей угол 150°. Когда C стремится к B, биссектриса CL угла ACB стремится к нулю, а медиана BM – к ½ AB. Когда C стремится к D, BM стремится к нулю, а CL ≥ BC. Значит, существует положение точки C, при котором CL = BM = AK. ОтветСуществует. ЗамечанияНетрудно видеть, что при движении C от B к D биссектриса возрастает, а высота и медиана убывают. Следовательно, углы искомого треугольника определяются однозначно. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке