ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны окружность $\omega$ и не лежащая на ней точка $P$. Пусть $ABC$ – произвольный правильный треугольник, вписанный в $\omega$, а точки $A'$, $B'$, $C'$ – проекции $P$ на прямые $BC$, $CA$, $AB$. Найдите геометрическое место центров тяжести треугольников $A'B'C'$. Докажите, что |
Задача 65073
УсловиеВ компании из шести человек любые пять могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми. Решение Заметим, что у каждого в компании не менее трёх знакомых. Действительно, если бы некто X был знаком менее, чем с тремя, то, исключив из компании одного из его знакомых, мы получили бы пятёрку людей, в которой у X не более одного знакомого, то есть посадить их за круглый стол с соблюдением условия невозможно. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке