Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда

a'(b - c) + b'(c - a) + c'(a - b) = 0.


Вниз   Решение


Докажите, что барицентрические координаты точки X, лежащей внутри треугольника ABC, равны (SBCX : SCAX : SABX).

ВверхВниз   Решение


Вадим и Лёша спускались с горы. Вадим шёл пешком, а Лёша съезжал на лыжах в семь раз быстрее Вадима. На полпути Лёша упал, сломал лыжи и ногу и пошёл в два раза медленней Вадима. Кто первым спустится с горы?

ВверхВниз   Решение


Найти все рациональные положительные решения уравнения  xy = yx  (x ≠ y).

ВверхВниз   Решение


Имеется неограниченное количество плиток в форме многоугольника M. Будем говорить, что из этих плиток можно сложить паркет, если ими можно покрыть круг сколь угодно большого радиуса так, чтобы не было ни просветов, ни перекрытий.
а) Докажите, что если M — выпуклый n-угольник, где n$ \ge$7, то паркет сложить нельзя.
б) Приведите пример такого выпуклого пятиугольника с попарно непараллельными сторонами, что паркет сложить можно.

ВверхВниз   Решение


Автор: Храбров А.

Числа a, b, c и d таковы, что  a² + b² + c² + d² = 4.  Докажите, что  (2 + a)(2 + b) ≥ cd.

Вверх   Решение

Задача 65117
Темы:    [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Автор: Храбров А.

Числа a, b, c и d таковы, что  a² + b² + c² + d² = 4.  Докажите, что  (2 + a)(2 + b) ≥ cd.


Решение

0 ≤ (2 + a + b)² = 4 + 4(a + b) + (a + b)² = 8 + 4a + 4b + 2ab + a² + b² – 4 = 2(2 + a)(2 + b) – c² – d² ≤ 2(2 + a)(2 + b) – 2cd,  что и требовалось.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Вариант 2014/2015
этап
Вариант 3
класс
Класс 9
задача
Номер 9.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .