ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Множество чисел А заданы условиями: Напечатать первые n<1000 чисел множества А в порядке возрастания. Вот начало этой распечатки: 1,3,4,7,9,10,13,15,19,... Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника Два n-угольника вписаны в одну окружность, причем
наборы длин их сторон одинаковы, но не обязательно равны
соответственные стороны. Докажите, что площади этих многоугольников
равны.
На гранях двух разных правильных тетраэдров M и N написаны числа M1, M2, M3, M4 и N1, N2, N3, N4 в порядке, указанном на рис.1.3. Можно ли совместить тетраэдры так, чтобы на совпавших гранях оказались написаны одинаковые числа? Напечатать ДА или НЕТ. |
Задача 65598
УсловиеРавносторонний треугольник со стороной 8 разделили на равносторонние треугольнички со стороной 1 (см. рис.). Какое наименьшее количество треугольничков надо закрасить, чтобы все точки пересечения линий (в том числе и те, что по краям) были вершинами хотя бы одного закрашенного треугольничка? Решение Всего точек пересечения линий 1 + 2 + 3 + ... + 9 = 45, а у треугольничка три вершины, так что по крайней мере 45 : 3 = 15 треугольничков придётся закрасить. Ответ15 треугольничков. Замечания1. Можно показать, что существует только один (с точностью до осевой симметрии) способ закрасить 15 треугольничков. 2. В найденной нами раскраске ни одна вершина не закрашена дважды. Сторона 8 большого треугольника – минимальная, при которой такое "экономное" закрашивание возможно. Оно заведомо невозможно, если длина стороны кратна 3. Более сложный вариант этой задачи (для треугольника со стороной 2015) опубликован в разделе "Задачи" журнала "Математика в школе", 2016, №1. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке