Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В сундуке лежали два колпака белого цвета и три черного. В темную комнату завели трех мудрецов и надели на них какие-то колпаки из сундука. Потом вывели в другую комнату. Они не видят, какого цвета колпак на них, но видят колпакки других. Через некоторое время один из них догадался, какого цвета на нем колпак. Как? Какого цвета был колпак?

Вниз   Решение


Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?

ВверхВниз   Решение


Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Вверх   Решение

Задача 65654
Темы:    [ Четырехугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?


Решение

Например, см. рис.

В каждом из треугольников разбиения тупыми являются углы при вершинах В и С.


Ответ

Существует.

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2015/16
класс
Класс 7
задача
Номер 7.1.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .