ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC высота AH равна медиане BM.
Найдите угол MBC.
На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке K . Найдите площадь треугольника CKB , если катет BC равен a и катета AC равен b . На сторонах AB и AC треугольника ABC взяты точки E и F. Прямые EF и BC пересекаются в точке S. Точки M и N – середины отрезков BC и EF соответственно. Прямая, проходящая через вершину A и параллельная MN, пересекает BC в точке K. Докажите, что BK : CK = FS : ES. Какое наибольшее количество натуральных чисел, не превосходящих 2016, можно отметить так, чтобы произведение любых двух отмеченных чисел было бы точным квадратом? |
Задача 65904
УсловиеКакое наибольшее количество натуральных чисел, не превосходящих 2016, можно отметить так, чтобы произведение любых двух отмеченных чисел было бы точным квадратом? Решение Так как 44² < 2016 < 45², то натуральных чисел, квадраты которых не больше чем 2016, всего 44. Произведение двух точных квадратов является точным квадратом, поэтому числа 1 = 1², 4 = 2², ..., 1936 = 44² могут быть отмечены. Ответ44 числа. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке