ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Через точку, расположенную внутри треугольника, проведены прямые, параллельные сторонам треугольника. Эти прямые разбивают треугольник на три треугольника и три четырёхугольника. Пусть a, b и c – параллельные высоты трёх этих треугольников. Найдите параллельную им высоту исходного треугольника.

Вниз   Решение


Лёша нарисовал геометрическую картинку, обведя четыре раза свой пластмассовый прямоугольный треугольник, прикладывая короткий катет к гипотенузе и совмещая вершину острого угла с вершиной прямого. Оказалось, что "замыкающий" пятый треугольник – равнобедренный (см. рис., равны именно отмеченные стороны). Найдите острые углы Лёшиного треугольника?

Вверх   Решение

Задача 65994
Темы:    [ Иррациональные уравнения ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Решите уравнение  


Решение

  Согласно неравенству Коши  
  Перемножим эти неравенства:     Равенство достигается тогда и только тогда, когда каждое из трёх неравенств обращается в равенство или когда значения обеих частей уравнения равны нулю. Значит,  x = y = 1  или  x = y = 0.


Ответ

(0, 0),  (1, 1).

Замечания

7 баллов

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2016/17
класс
Класс 10
задача
Номер 10.5.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .