ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи У золотоискателя есть куча золотого песка массой 37 кг (и больше песка у него нет), двуxчашечные весы и две гири 1 и 2 кг. Золотоискатель умеет делать действия двух типов:
Как ему за два действия с весами получить кучку, в которой ровно 26 кг песка? Смешать две кучки песка, а также просто ставить что-то на весы действием не считается. Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре? Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$ Найдите все действительные значения a и b, при которых уравнения x³ + ax² + 18 = 0, x³ + bx + 12 = 0 имеют два общих корня, и определите эти корни. Даны 10 натуральных чисел, не превышающих 91. Докажите, что отношение некоторых двух из этих чисел принадлежит отрезку [2/3, 3/2]. На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа? Докажите, что выпуклый многоугольник нельзя
разрезать на конечное число невыпуклых четырехугольников.
В равнобедренном треугольнике ABC (AB = BC) средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB. Четырехугольник $ABCD$ вписан в окружность. По дуге $AD$, не содержащей точек $B$ и $C$, движется точка $P$. Фиксированная прямая $l$, перпендикулярная прямой $BC$, пересекает лучи $BP$, $CP$ в точках $B_0$, $C_0$ соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника $PB_0C_0$ в точке $P$, проходит через фиксированную точку. |
Задача 66645
УсловиеЧетырехугольник $ABCD$ вписан в окружность. По дуге $AD$, не содержащей точек $B$ и $C$, движется точка $P$. Фиксированная прямая $l$, перпендикулярная прямой $BC$, пересекает лучи $BP$, $CP$ в точках $B_0$, $C_0$ соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника $PB_0C_0$ в точке $P$, проходит через фиксированную точку.
РешениеПусть $Q$ – вторая точка пересечения касательной с описанной окружностью четырехугольника. Тогда (см. рис.) $$\angle BPQ = \angle B_0C_0P = 90^{\circ} - \angle BCP = 90^{\circ} - \angle BQP.$$ Следовательно, $\angle PBQ = 90^{\circ}$, т.е. $PQ$ – диаметр окружности $ABCD$. Таким образом, все касательные проходят через центр окружности. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке