Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

У золотоискателя есть куча золотого песка массой 37 кг (и больше песка у него нет), двуxчашечные весы и две гири 1 и 2 кг. Золотоискатель умеет делать действия двух типов:

  • уравнивать весы, т.е. если сейчас весы не в равновесии, то он может пересыпать часть песка с одной чаши на другую так, чтобы весы встали в равновесие;
  • досыпать до равновесия, т.е. если сейчас весы не в равновесии, то он может добавить песка на одну из чаш так, чтобы весы встали в равновесие.
  • Конечно, каждое из этих действий он может сделать только если для этого у него хватает песка.

    Как ему за два действия с весами получить кучку, в которой ровно 26 кг песка? Смешать две кучки песка, а также просто ставить что-то на весы действием не считается.

    Вниз   Решение


    Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?

    ВверхВниз   Решение


    Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$

    ВверхВниз   Решение


    Найдите все действительные значения a и b, при которых уравнения  x³ + ax² + 18 = 0,   x³ + bx + 12 = 0  имеют два общих корня, и определите эти корни.

    ВверхВниз   Решение


    Даны 10 натуральных чисел, не превышающих 91. Докажите, что отношение некоторых двух из этих чисел принадлежит отрезку  [2/3, 3/2].

    ВверхВниз   Решение


    На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа?

    ВверхВниз   Решение


    Докажите, что выпуклый многоугольник нельзя разрезать на конечное число невыпуклых четырехугольников.

    ВверхВниз   Решение


    В равнобедренном треугольнике ABC  (AB = BC)  средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.

    ВверхВниз   Решение


    Четырехугольник $ABCD$ вписан в окружность. По дуге $AD$, не содержащей точек $B$ и $C$, движется точка $P$. Фиксированная прямая $l$, перпендикулярная прямой $BC$, пересекает лучи $BP$, $CP$ в точках $B_0$, $C_0$ соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника $PB_0C_0$ в точке $P$, проходит через фиксированную точку.

    Вверх   Решение

    Задача 66645
    Темы:    [ Вписанные четырехугольники ]
    [ Угол между касательной и хордой ]
    [ Признаки и свойства касательной ]
    Сложность: 3
    Классы: 8,9
    Из корзины
    Прислать комментарий

    Условие

    Четырехугольник $ABCD$ вписан в окружность. По дуге $AD$, не содержащей точек $B$ и $C$, движется точка $P$. Фиксированная прямая $l$, перпендикулярная прямой $BC$, пересекает лучи $BP$, $CP$ в точках $B_0$, $C_0$ соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника $PB_0C_0$ в точке $P$, проходит через фиксированную точку.

    Решение

    Пусть $Q$ – вторая точка пересечения касательной с описанной окружностью четырехугольника. Тогда (см. рис.) $$\angle BPQ = \angle B_0C_0P = 90^{\circ} - \angle BCP = 90^{\circ} - \angle BQP.$$ Следовательно, $\angle PBQ = 90^{\circ}$, т.е. $PQ$ – диаметр окружности $ABCD$. Таким образом, все касательные проходят через центр окружности.

    Источники и прецеденты использования

    олимпиада
    Название Олимпиада по геометрии имени И.Ф. Шарыгина
    год
    Год 2018
    Заочный тур
    задача
    Номер 4 [8 кл]

    © 2004-... МЦНМО (о копирайте)
    Пишите нам

    Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .