ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 66857
УсловиеГлеб задумал натуральные числа $N$ и $a$, где $a < N$ . Число $a$ он написал на доске. Затем Глеб стал проделывать такую операцию: делить $N$ с остатком на последнее выписанное на доску число и полученный остаток от деления также записывать на доску. Когда на доске появилось число 0, он остановился. Мог ли Глеб изначально выбрать такие $N$ и $a$, чтобы сумма выписанных на доске чисел была больше 100$N$? Решение Как известно (см. задачу 34918), найдётся такое $m$, что $\frac{1}{2} + \frac{1}{3} + ... + \frac{1}{m+2}$ > 100. ОтветМог. Замечания12 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |